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Abstract 
 

We utilize the modified linear stability analysis to establish mathematically, the existence of hydrodynamic 

instability in a single diffusive bottom heavy system under the force field of gravity, for situations with more 

general nature of the bounding surfaces, in the parameter regime 2 0 1,T   where 0T  and 2  being some 

properly chosen mean temperature and coefficient of variation of specific heat at constant volume due to 

temperature variation of the fluid, respectively. 
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1. Introduction 

Banerjee and Gupta [1] have given the modified analysis of the Rayleigh’s [2] classical 

linear stability theory of thermal instability problem, by taking into account of the fact that 

the linear theoretical explanation of buoyancy driven thermal instability in a horizontal 

layer of fluid heated from below or above, also known as the modified Bénard [3, 4] 

instability problem, should depend not only upon the Rayleigh number which is 

proportional to the uniform temperature difference maintained across the layer but also 

upon another parameter that arises due to the variation in the specific heat at constant 

volume on account of the variations in temperature. Recently, Gupta and Shandil [5] 

established the existence of instability in a single diffusive bottom heavy system for 

thermally conducting permeable boundaries using the modified analysis. 

  

In this paper, we prove the existence of hydrodynamic instability in a single diffusive 

bottom heavy system with thermally insulating permeable boundaries. The thermally 

insulating boundary conditions have several physical justifications that arise from a more 

accurate description of heat transfer phenomenon in the environment surrounding the 

fluid. The problem under investigation helps in better understanding of thermal 

convection, apart from its importance and applications in many scientific and engineering 

fields. The characteristic value problem is solved by using the Galerkin technique. 

Further, it is observed that the limiting cases of the boundary parameters 0K  an 1K

characterizing the permeable nature of the lower and upper boundary respectively, give 

rise to the particular cases, namely, when both the bounding surfaces are either 
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dynamically free 
0 1( 0, 0)K K   or both rigid 

0 1( , )K K  , and either one of them 

is dynamically free 
0 1( 0 or 0)K K   while the other one is rigid 

0 1( or )K K  . 

2. Formulation of the Eigenvalue Problem in Non-Dimensional Form 

A viscous finitely heat conducting modified Boussinesq liquid layer of infinite horizontal 

extension and finite vertical depth is statically confined between two horizontal boundaries at 

z = 0 and z = d which are respectively maintained at uniform temperatures T₀ and T₁. We 

choose Cartesian coordinate system with the x and y axes in the plane of the lower boundary 

and the positive direction of the z-axis along the vertically upward direction. Further, both the 

bounding surfaces are thermally insulating and permeable. We mathematically analyze the 

onset of hydrodynamic instability of the system under the force field of gravity. The non-

dimensional form of the modified governing linearized perturbation equations, which govern 

the initiation of thermal convection, are given by Banerjee and Gupta [1] as 

 

2 2 2 2( ) ,
r

p
D a D a w

P


 
    

                                                   

(2.1) 

2 2 2

2 0( ) (1 ) ,D a p Ra T w                                                                                            (2.2) 

where w  is the z-component of the perturbation velocity,   is the temperature perturbation, 

a  is the horizontal  wave number,  /rP    is the thermal Prandtl number, 4 /R g d   is 

the Rayleigh number,   is the volume coefficient of thermal expansion, 0 1( ) /T T d    is the 

maintained temperature gradient, g is the gravitational acceleration,   is the kinematic 

viscosity,   is the thermal diffusivity,  r ip p ip   represents the growth rate of perturbations 

(a complex constant in general), rp  and  ip  being real constants, and  /D d dz .  

Since both the lower and upper boundary planes are fixed and thermally insulating, the 

associated boundary conditions are: 

0w   0D   at 0z    and  1z  .                                          (2.3) 

Further, Beavers and Joseph [6] proposed that at a permeable boundary the normal derivative 

of the tangential velocity is directly proportional to that velocity and if the normal is taken 

into the fluid then the constant of proportionality is positive. As described by Gupta et al. [7], 

the appropriate boundary conditions are given by 

  2

0 0D w K Dw  , at 0z  ,                                                                                                   (2.4)  

 
2

1 0D w K Dw  , at 1z  ,                                                                                                   (2.5) 

where 0K  and 1K  are non-negative dimensionless parameters, characterizing the permeable 

nature of the lower and upper boundary respectively. 

Eqns. (2.1)-(2.2) together with boundary conditions (2.3)-(2.5) pose a double eigenvalue 

problem for p , for prescribed values of a , rP , R , 2 0 ,T 0K  and 1 K . The given normal mode 

is stable, neutral or unstable according as the real part rp  of p  is negative, zero or positive 

respectively. Further, the marginal state of the system is defined by 0rp  , and if 0rp   

implies that 0ip   for every wave number a  then the ensuing thermal convection is neutral 

and the ‘principle of exchange of stability’ is valid. Otherwise, we will have over-stability at 

least when instability sets in as a certain mode. 
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3. The Marginal State and Solution of the Problem 

 

Case I: When Liquid Layer is Heated From Below (i.e. R > 0) 

 (A) When 
2 0

1 0.T    

The governing Eqns. (2.1)-(2.2) and boundary conditions (2.3)-(2.5) imply that we have 

the modified Bénard thermal instability problem with insulating permeable boundaries, 

wherein the liquid layer is heated from below, in the parameter regime 
2 0 1.T   The 

Pellew and Southwell [7] technique for the characterization of the marginal state is 

applicable with the following result. 

 

Theorem 1. If 
2 01 0T   with R > 0, a necessary condition for the existence of nontrivial 

solutions for w and θ satisfying Eqns. (2.1)-(2.2) and boundary conditions (2.3)-(2.5) is 

that  0ip   .                    (3.1)  

Proof. Multiplying Eq. (2.1) throughout by w
*
 (the complex conjugate of w), and 

integrating the resulting equation over the vertical range of z, and substituting for w   in 

this equation from Eq. (2.2), we then integrate each term of the equation so obtained, by 

parts, for a suitable number of times with the help of boundary conditions (2.3)-(2.5) and 

derive from the imaginary part of the integrated equation 

 
1 1

2 2 22

2

2 00 0

1 1
    0

(1 )
i

r

p Dw a w dz dz
P R T a




 
   

 
  .                  (3.2) 

From Eq. (3.2), it follows that pi = 0.  

This implies that the ‘principle of exchange of stabilities’ is valid for the problem under 

consideration and hence the marginal state is characterized by p = 0. In this case, Eqns. 

(2.1)-(2.2) and boundary conditions (2.3)-(2.5) can be treated as an eigenvalue problem in 

R for given values of 2 0 0, ,a T K and 1K . We proceed along the same lines as described by 

Gupta and Kalta [8], using the Galerkin technique to obtain the following results. 

 

Theorem 2. If 2 01 0T   with R > 0 and p = 0, a nontrivial solution for w and θ 

satisfying Eqn. (2.1)-(2.2) and boundary conditions (2.3)-(2.5) implies that the Rayleigh 

number R in terms of a, 2 0 0,T K  and 1K  is given by 

     





2

2 0 0 1 1

0 1 1 0 1 1

2 2

1 1 0 1 1 0 1 1

4 2

1 1 0 1 1 0 1 1

1 10

(1 ) 7{ ( 9) 9( 8)}

504{ ( 4) 4( 3)}{ ( 9) 9( 8)}

24 [72{ ( 13) 51} 3 {5 ( 14) 312} { ( 15) 72}]

[76 ( 15) {17 ( 16) 1140} { ( 17) 76} 4464] .

R
T K K K

K K K K K K

a K K K K K K K K

a K K K K K K K K


  

   

     

        

        

  

                                                                                                                                        (3.3) 

For given values of 2 0 ,T  0K  and 1K , equation (3.3) gives the Rayleigh number R as a 

function of the wave number a . The minimum of R is the critical Rayleigh number cR  and 

the value of a  at which R attains minimum is the critical wave number ca . A close 

observation of the expression for R given by equation (3.3) shows that R attains its 

minimum when 0a  . We put 0a   on the right hand side of the equation (3.3) and 

obtain cR as 

 
0 1 0 1

2 0 0 1 0 1

4( ) 12720

(1 ) 9( ) 72
c

K K K K
R

T K K K K

   
  

    
.                                                                                    (3.4) 
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Remark 1. It is easily seen from Eqns. (2.1)-(2.2) and boundary conditions (2.3)-(2.5) 

that for the case when 
0 0K  and 

1 0K  , we have governing equations for the 

modified Bénard problem with both boundaries free and from equation (3.4) we find 

that 

        2 0

120

(1 )
cR

T



.                                                                                                           (3.5) 

When 
2 0 0T   the value Rc = 120 is exactly the same as that obtained by Nield [9] 

corresponding to this case. 

 

Remark 2. When 
0K   and 

1 ,K   it is easily seen from Eqns. (2.1)-(2.2) and 

boundary conditions (2.3)-(2.5) that we have governing equations for the modified 

Bénard problem with both boundaries rigid and in this case we find from Eq. (3.4) that 

        2 0

720

(1 )
cR

T



.                                                                                                          (3.6) 

When 2 0 0T   the value Rc = 720 is exactly the same as that obtained by Sparrow et al. 

[10] corresponding to this case. 

Remark 3. When either ( 0 0K   and 
1K  ) or ( 0K   and 1 0K  ), it is easily 

seen from Eqns. (2.1)-(2.2) and boundary conditions (2.3)-(2.5) that we have 

governing equations for the modified Bénard problem when either one of them is 

dynamically free while the other is rigid and in this case we find from equation (3.4) 

that 

       2 0

320

(1 )
cR

T



.                                                                                                            (3.7) 

    This expression (3.7) is identical with that obtained by Gupta and Surya [11] corresponding   

     to this case. 

Since R is positive the initial distribution of density is top heavy and therefore potentially 

gravitationally unstable. This destabilizing effect together with the joint stabilizing effects 

of viscosity and conduction is expected to impart, in the usual parameter regime 

characterized by 2 01 0T  . Above described theorems 1 and 2 imply that for the 

modified Bénard problem with insulating permeable boundaries, in which the liquid layer 

is heated from below, instability must set in the system when R goes beyond a critical 

value with the ‘principle of exchange of stabilities’ being valid at the marginal state. 

 

(B) When 
2 0

1 0.T   

Here it is pointed out that nature of the problem is altogether different in the regime 

2 01 0T    with R > 0, in which case we have R(1 – α2T0) < 0, and this in turn forces 

all the perturbations to decay, thus making the system stable. 

We now prove the following theorem to show the existence of this new stabilizing 

mechanism. 

 

     Theorem 3. If 2 01 0T  with R > 0, a necessary condition for the existence of   

      nontrivial solutions for w and θ satisfying Eqns. (2.1)-(2.2) and boundary conditions     

       (2.3)-(2.5) is that 

       pr < 0.                                   (3.8)  

Proof. Multiplying Eq. (2.1) throughout by w
*
 (the complex conjugate of w), and 

integrating the resulting equation over the vertical range of z, and substituting for w   
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in this equation from equation (2.2), we then integrate each term of the equation so 

obtained by parts for a suitable number of times with the help of boundary conditions 

(2.3)-(2.5) and derive from the real part of the integrated equation that 

 

      

       

 

1 1
22 2 2 2 2 22 2 4 2

1 0
1 0

0 0

1
2 2 22

2

2 0 0

1
 2  

1
 

1

r

r

r

K Dw K Dw D w a Dw a w dz p Dw a w dz
P

D a p dz
R T a

  


    




  



 
 

 



 

                                                (3.9) 

From equation (3.9), it follows that pr < 0.  

 

Case II: When Liquid Layer is Heated From Above (i.e. R < 0) 

 

(A) When 
2 0

1 0.T   

The governing Eqns. (2.1)-(2.2) and boundary conditions (2.3)-(2.5) imply that we 

have the modified Bénard thermal instability problem with insulating permeable 

boundaries, wherein the liquid layer is heated from above, in the parameter regime 

2 01 0.T   Further, the stability of the system can be established along the classical 

lines as given in Chandrasekhar [12] so that any oscillation which may exist in the 

system must of necessity decay. We have the following theorem: 

 

Theorem 4. If 2 01 0T  with R < 0, a necessary condition for the existence of 

nontrivial solutions for w and θ satisfying Eqns. (2.1)-(2.2), and (2.3)-(2.5) is that 

 pr < 0.                                                                                                     (3.10)

               

Proof.  Proceeding exactly as in the proof of Theorem 3 we have in place of Eq. (3.9) 

       

 

1 1
22 2 2 2 2 22 2 4 2

1 0
1 0

0 0

1
2 2 22

2

2 0 0

1
 2  

1
     

( )1

r

r

r

K Dw K Dw D w a Dw a w dz p Dw a w dz
P

D a p dz
R T a

  


 
      





 





 



    (3.11) 

where  2

0

Dw and  2

1

Dw  are values of 
2

Dw   at the lower and upper boundary 

surface respectively. From equation (3.11), it follows that pr < 0. 

Theorem 4 establishes the stability of the system when the liquid layer under 

consideration is heated from above. It may, however, be remarked that the usual 

physical circumstances are characterized by parameter regime 2 01 0T   and it is 

only in this parameter regime that the above results are valid. 

 

(B) When 
2 0

1 0.T   

The governing equations and boundary conditions imply that we have the modified 

Bénard problem with indulating permeable boundaries, wherein liquid layer is heated 

from above, in the parameter regime 2 01 0.T   Since R is negative the initial 

distribution of density is bottom heavy and therefore statically gravitationally stable. 

This stabilizing effect together with the joint stabilizing effect of viscosity and 

conduction is expected to impart, in the usual parameter regime characterized by

2 01 0T   an overall stabilizing effect to the system. That this is really the case is 
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borne out by Theorem 4 wherein the stability of the system is proved in such 

situations. The nature of the problem, however, is completely different in the regime 

2 01 0T   with R  <  0, in which case we have  R(1 – α2T0) > 0. This in turn introduces 

a new instability into the system as | R | goes beyond a critical value with the ‘principle 

of exchange of stabilities’ being valid at the marginal state. 

We now prove the following two theorems to show the existence of this new 

instability mechanism. 

 

Theorem 5. If 
2 01 0T   with R < 0, a necessary condition for the existence of 

nontrivial solutions for w and θ satisfying Eqns. (2.1)-(2.2), and (2.3)-(2.5) is that 

 pi = 0.                                  (3.11)  

 

Proof. Proceeding exactly as in the proof of Theorem 1 we have in place of Eq. (3.2)  

 
1 1

2 2 22

2

2 00 0

1 1
  0

(1 )
i

r

p Dw a w dz dz
P R T a




 
   

  
                                

                                                                                                                               (3.13) 

From equation (3.13), it follows that pi = 0. It implies that the ‘principle of exchange 

of stabilities’ is valid in the present case and hence the marginal state is characterized 

by  p = 0. In this case, Eqns. (2.1)-(2.2) and (2.3)-(2.5) can be treated as an eigenvalue 

problem in R for given values of a
2
, α2T0, K0 and K1. Proceeding exactly along the 

same lines as described by Gupta and Kalta [8], using the Galerkin technique to obtain 

the following results. 

 

      Theorem 6. If 2 01 0T   with R < 0 and p = 0, a nontrivial solution for w and θ    

       satisfying Eqns. (2.1)-(2.2), and (2.3)-(2.5) implies that the Rayleigh number R in  

       terms of a, 2 0 0,T K  and 1K  is given by 

     





2

2 0 0 1 1

0 1 1 0 1 1

2 2

1 1 0 1 1 0 1 1

4 2

1 1 0 1 1 0 1 1

1 10

1 7{ ( 9) 9( 8)}

504{ ( 4) 4( 3)}{ ( 9) 9( 8)}

24 [72{ ( 13) 51} 3 {5 ( 14) 312} { ( 15) 72}]

[76 ( 15) {17 ( 16) 1140} { ( 17) 76} 4464] .

R
T K K K

K K K K K K

a K K K K K K K K

a K K K K K K K K


  

   

     

        

        

  

                                                                                                  (3.14) 

Remark. It is easily seen from equation (3.14) that the results analogous to those given 

in Remarks 1 to 3 are also valid, in the present case. 
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